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ABSTRACT

Rheumatoid arthritis (RA) is the most common systemic inflammatory disease, characterized
by recurrent flares that contribute to joint damage, disability, and reduced quality of life. While
treatment is essential for controlling symptoms and slowing disease progression, it is often
associated with substantial side effects. Recent advances suggest that sustained deep remission,
including immunological and drug-free remission, may be achievable, raising the question
of whether some patients can be considered “cured”. This clinical context allows for the
application of statistical methodologies such as mixture cure models, which explicitly account
for a cured subgroup. In this work, we explore mixture cure modeling to gain insights into long-
term remission in RA. Using data from a clinical study with control and experimental groups,
we investigate covariates influencing the probability of remission. Analyses were conducted
with the MDCcure package in R, providing a practical framework for modeling cure rates in
RA.

Keywords: R package; nonparametric test; cure probability;

1. INTRODUCTION

Rheumatoid arthritis (RA) is the most frequently diagnosed systemic inflammatory disease, character-
ized by recurrent flares that contribute to joint damage, disability, and impaired quality of life (Wasserman,
2011; Myasoedova et al., 2019). Diagnosis is based on clinical features such as swelling in at least one joint,
supported by laboratory markers including rheumatoid factor, anti-citrullinated protein antibodies, and
elevated inflammatory indices. Over recent decades, treatment goals have evolved from symptom con-
trol to the prevention of disability and joint damage, and more recently, to achieving early and sustained
remission (Smolen et al., 2010; Ajeganova & Huizinga, 2017).

While disease-modifying antirheumatic drugs (DMARDs), including both conventional (tDMARDs)
and biologic (b DMARDSs) therapies, are effective in controlling disease activity, they are associated with
considerable side effects (Maneiro et al., 2014; Verhoef et al., 2017). Emerging evidence shows that a subset
of patients can achieve deep remission, immunological remission, and even drug-free remission, suggesting
that some patients may effectively be “cure” (Hou et al., 2025; van der Togt et al., 2025). This has
motivated strategies for dose reduction and treatment discontinuation, aiming to minimize drug exposure
while maintaining disease control (Fautrel et al., 2016; Anez et al., 2024; Nam, 2025).

The effects of RA treatment are typically analyzed using survival methods, which model time-to-event
data such as time to flare. Standard survival models assume all patients are susceptible to the event, but
when a cured subgroup exists, these models can produce biased estimates (Peng & Yu, 2021). Mixture
cure models address this limitation by separating the population into susceptible and cured individuals,
allowing the estimation of covariate effects on both the probability of being cured and the timing of events
among susceptible patients (Boag, 1949; Ghitany et al., 1994). Although widely applied in oncology (Jia
et al., 2013; Felizzi et al., 2021), the application of cure models to RA has been limited.

In this study, we introduce the application of mixture cure models to RA using the R package MDCcure
(Monroy-Castillo, Jacome, Cao, Van Keilegom, & Miiller, 2025). We analyze clinical trial data in which
patients were divided into control and experimental groups, investigating covariates associated with long-
term remission and flare risk. This framework enables a more detailed understanding of which patients are
likely to maintain remission and which may require ongoing treatment, supporting personalized therapy
decisions and optimizing treatment strategies in RA.



2. METHODS
2.1 Mixture cure model

Let Y be the time until the event happens. It is assumed that individuals are subject to random right
censoring, and that the censoring time, C', and the time to occurrence of the event, Y, are conditionally
independent given a set of covariates X. The conditional distribution function of Y is F(t|x) = P(Y <
t|X = x), and the corresponding survival function is S(t|&) = 1 — F'(t|x). Under right censoring, only the
pair (T, 0) is observed, where T'= min(Y, C), and § = 1(Y < C) is the uncensoring indicator. Moreover,
the conditional distribution functions of C' and T' are G(t|x) and H (t|x), respectively. On the other hand,
the cure indicator is v = 1(Y = o0), with v = 0 if the individual is susceptible to the event, and v =1
otherwise (it is cured). The probability of not being cured (incidence) is p(x) = P(v = 0|X = x), and the
conditional survival function of the uncured group, also called latency, is So(t|x) = P(Y > t|lv =0, X = ).
Then, the mixture cure model can be written as:

S(tlz) = 1—p(@)+p(@)So(tle). (1)

An important benefit of this model is that it allows covariates to have different influence on cured and
uncured patients. So, one of the most important problems to solve is to test if the covariate X or a set of
covariates, X, has some effect on the cure rate. Note that it is possible to write E{v|X =} =1 — p(x).
Motivated by this, Monroy-Castillo, Jicome, Cao, & Keilegom (2025) proposed a hypothesis test for the
cure rate based on the martingale difference correlation (MDC) introduced by Shao & Zhang (2014).

2.2 Covariate hypothesis tests based on the martingale difference correlation

The MDC is a natural extension of distance correlation proposed by Szekely et al. (2007), which is
used to measure dependence between two vectors. The notion of the MDC is to measure the departure of
(X,Y) from the relationship that

E(Y|X) = E(Y) almost surely,

that is, the conditional mean of Y given X is independent of X. The definition of the martingale difference
divergence (MDD) was motivated by the definition of the distance covariance. The distance covariance
between random vectors X € R? and Y € R? with finite first moments is defined as the non-negative
square root of the quantity V?(X,Y"), given by:

V2(X,Y) _ 1 / |fXaY(t’S)_fX(t)fY(S)|2dtd57
RP+4a

CpCq [t[1+P|s|tta
%. Similarly, the distance variance, V(X), is defined as V(X, X). We refer the reader
to Szekely et al. (2007) for more details on distance covariance and its properties. Based on this framework,
the martingale difference divergence (MDD) is defined as follows.

where cq =

Definition. For random vectors X € R? and Y € R, the martingale difference divergence of Y given X
is the nonnegative number MDD(Y'|X)? defined by

MDD(Y|X)2 _ i / ‘gY,X(S) —9vgx (S)|2d87 (2)

Cp Eh
where gy, x (s) = E(Y exp{i(s, X)}), gv = E(Y) and gx(s) = E(exp{i(s, X)}).
Similarly, the martingale difference correlation is defined as follows.

Definition. For random vectors X € R? and Y € R, the martingale difference correlation of Y given X
is the non-negative number given by

MDD(Y|X)?

MDC(Y|X)*> = Var(Y)2V2(X)’
0, otherwise,

Var(Y)?V?(X) > 0,

where Var(Y) is the variance of Y and V(X)) is the distance variance of X.



Shao & Zhang (2014) showed that MDC(Y'|X) = 0 if and only if E(Y|X) = E(Y) almost surely.

In the literature, two sample estimators have been proposed for the martingale difference divergence
(MDD), analogous to the two estimators introduced for the distance covariance by Szekely et al. (2007) and
Huo & Szekely (2016). These two MDD estimators give rise to corresponding estimators of the martingale
difference correlation.

The first estimator, referred to as MDDV, is based on double-centered matrices and is known to be
biased. It was originally proposed by Shao & Zhang (2014) as MDD, (Y'|X). This estimator leads to
the corresponding martingale difference correlation estimator, denoted here as MDCV,,, which was also
introduced by Shao & Zhang (2014) as MDC,,(Y|X)?. In this approach, the variance of Y is estimated
using the sample variance var,(Y’), and the quantity V?(X) is estimated using the distance variance dvar,
introduced by Szekely et al. (2007) in Equation (2.9).

An alternatixggs/timator of MDD, denoted as MDDU,, is a bias-corrected version proposed by Park
et al. (2015) as MDD,,(Y|X)?. Tt is based on the U-centered matrices defined in Equation (3.5) of the
same paper. This estimator leads to a (Br\rgsponding martingale difference correlation estimator, which we
denote by MDCU,,, and is defined as MDC,,(Y|X)?. Moreover, it has been shown that this estimator is
a U-statistic.

These estimators are implemented in the MDCcure package through the functions MDD() and MDC(),
where the center argument specifies the type of centering applied. Setting center = "D" uses double-
centering of the matrices, which yields a biased estimator, while center = "U" applies U-centering and
produces an unbiased estimator.

Both estimators of the MDC, the biased and the bias-corrected versions, are sample-based functions
and can therefore also be considered statistics. Based on the proposed statistics, one can construct a MDC
test to determine whether the covariate X has an effect on the conditional mean of Y. To approximate the
null distribution of the test statistic, two approaches are considered: a permutation test and a chi-square
approrimation.

The permutation test works by computing the test statistic on the observed data and comparing it to
the distribution of the statistic obtained from multiple datasets where the relationship between X and Y
has been artificially broken by randomly permuting the values of X. This nonparametric method is widely
used and described in detail by Gretton et al. (2005) and Pfister et al. (2018).

As a computationally faster alternative, a chi-square test is also implemented for the MDCU? statistic.
This approach builds on the asymptotic distribution theory developed by Shen et al. (2022), extending it
to the current context. The chi-square approximation offers a more efficient option when computational
resources or time are limited. Both ways are implemented in the mdc_test () function.

In the same way, Park et al. (2015) proposed a scalar-valued measure to assess the conditional mean
independence of Y given X while controlling for an additional random vector Z, termed the partial mar-
tingale difference correlation (pMDC). The pMDC provides a natural extension of the partial distance
correlation introduced by Szekely et al. (2007), and characterizes the dependency between Y and X after
removing the effect due to Z.

Analogous to how the martingale difference divergence, MDD (Y| X), is required to define the martingale
difference correlation, MDC(Y|X), the partial martingale difference correlation, pMDC(Y'|X; Z), is defined
in terms of the partial martingale difference divergence, pMDD(Y|X;Z).

Definition. (Remark 4.1 in Park et al. (2015)) Let Y € R, X € R?, and Z € R", and consider W =
(XT,Z")T € RPT". The partial martingale difference divergence of Y given X, after controlling for the
effect of Z, is defined as

pMDD(Y|X; Z) = MDD(Y|W)? — MDD(Y|Z)*.

Before providing the expression of the partial martingale difference correlation (pMDC), we introduce
some notation. Consider Cz = Cz(Z, Z’) the (random) double centered version of c(z,z') = |z — 2'|,
with respect to Z, where

Cz(Z,Z") = (2, Z’)—/c(Z,z')sz(z/) —/c(z,Z')sz(z)
+//c(z,z/)sz(z)sz(z').

Denote Dyw the (random) double centered version of d(w,w’) = |w — w'|,+, with respect to W, and
consider
E(CzDw)

VVE(Z)VE(W)

R*(Z,W) = (3)



Definition. (Proposition 4.1 in Park et al. (2015)) Let Y € R, X € RP, and Z € R", and consider
W = (XT,Z7)T ¢ RP™". The partial martingale difference correlation (pMDC) of Y given X, after
controlling for the effect of Z is defined as

MDC(Y|W)?-MDC(Y|Z)? R(Z,W) MDC(Y|Z) # 1
PMDC(Y|X,Z)—{ V/1I-MDC(Y |Z)* J (Y(Z) #1,

(4)
0, MDC(Y|Z) = 1

For a comprehensive treatment of the partial martingale difference correlation and the partial distance
correlation, we refer the reader to Park et al. (2015) and Székely & Rizzo (2014), respectively.

2.3 Hypothesis testing for the cure rate in a mixture cure model

Monroy-Castillo, Jacome, Cao, & Keilegom (2025) proposed to test the following hypotheses:
Ho:E(w|X) = 1—p as. vs Hi:E@|X) # 1—p as, (5)

which tests whether the covariate vector X has an effect on the cure probability. The main problem with
the hypotheses (5) is that the response variable (the cure indicator, v) is only partially observed due to
censoring. This challenge was addressed by estimating the cure indicator using the methodology proposed
by Amico et al. (2021). The idea was as follows, define 7 the upper limit of the support of the lifetime for
a susceptible individual, where 7 = sup,, 7(z) and 7(x) = inf{t : So(t|x) = 0} . It was assumed that 7 < co
and that the follow-up time is long enough so 7 < Tg(z) V&, where 7¢ () = inf{t : G(t|z) = 1}. Therefore,
it is reasonable to consider that all the individuals with a censored observed time greater than 7 can be
categorized as cured (v =1).

Since an uncensored subject experiences the event, he/she belongs to the non-cured population with
certainty, i.e., v = 0. Censored observations can be separated into two groups based on the cure threshold
7, and the cure status estimated in a different way for each of them. Those with observed time larger than
T are considered cured, i.e. v = 1. For the remaining censored observations, the cure status is replaced
with the probability:

1-p(X)

Pv=1X,C,Y >C) = 1—p(X) +p(X)So(C|X)

Note that under Ho in Eq. (5), the cure probability does not depend on X, the cure status can be
estimated as:

7— ]l(T>%)+(1*5)1(T§7ﬁ)1_ﬁ—1—1]‘f3;§()ﬁh(Tp()7 Y

where the estimators p, 7 and S’O,h(T |X) are computed as follows. 7 is the largest observed uncensored
survival time (Xu & Peng, 2014), p is the nonparametric estimator proposed by Laska & Meisner (1992)
and S ,(T|X) is the nonparametric estimator based on the Beran estimator proposed in Lépez-Cheda et
al. (2017).

Two statistics for testing covariate effects, based on the MDC between the estimated cure rate oy
and the covariate X, were proposed: MDCV,,(#1,|X)? and MDCU,,(2,|X)?. Here, MDCV,, and MDCU,,
denote the biased and bias-corrected estimators of the MDC, respectively. The null distribution of these
statistics was approximated using two approaches, a permutation procedure and a chi-square approxima-
tion, yielding three tests: MDCV, MDCU, and FMDCU.

In addition, Monroy-Castillo, Jicome, Cao, & Keilegom (2025) introduced an alternative test based
on the statistic

Tn = nhl/% i {pn(X:) — p}°, (7)

where pp(X) is the nonparametric estimator of Xu & Peng (2014), and p is obtained independently of
X using the cure rate estimator of Laska & Meisner (1992). This approach follows the goodness-of-fit
framework of Miiller & Van Keilegom (2019). The critical values are approximated via the bootstrap
procedure described in Section 3 of Miller & Van Keilegom (2019), leading to a fourth test denoted as
GOFT.

A natural extension arises when attempting to determine whether the cure rate is influenced by specific
covariates, when it is known to depend on at least one. To address this issue, Monroy-Castillo, Jacome,
Cao, & Keilegom (2025) extended the previous proposal in order to test if the cure rate depends on the
covariate X given it depends on the covariate Z, as follows:

Ho:Ew|X,Z) = 1—-p(Z)as. vs Hi:EW|X,Z) # 1—-p(Z) as. (8)



Using the methodology described earlier, the estimator for the cure status in Equation (6) can be extended
as follows:

1 —pn(2) .
1= pn(Z) +pn(2)S0.u(T|X, Z)

Uhp = 1T >7)+1-0)L(T <7) (9)
For the incidence p(Z) consider the estimator px(Z) in Xu & Peng (2014), and for the latency the estimator
So.r1(t| X, Z) which is the extended version of the nonparametric estimator in Lépez-Cheda et al. (2017)
to handle two covariates. In particular, a normal multivariate kernel Kgr(x) = |H| Y2 K(H /%) was
used with K(x) = (2m) ' exp (—32" «), the standard normal density. Here, H denotes the bandwidth
matrix, and |H| = det(H).

Based on the partial martingale difference correlation (pMDC) (Park et al., 2015) between the estimated
cure status op g and the covariates X conditional on Z, a statistic for testing the covariate hypothesis
was proposed:

pMDC,, (0n, 1| X, Z)*.

The null distribution is approximated using a permutation test. This methodology is implemented in the
testcov2() function.

2. PATIENTS

A total of 195 patients were enrolled and randomized into the control (n = 98) or optimization (n = 97)
groups. During the first year, 15 flares (15.31%) were observed in the control group compared to 24 flares
(24.74%) in the optimization group. In the second year, 140 patients were included in this study. Of these,
73 patients in the control group experienced 12 flares (16.44%) and 67 patients in the optimization group
experienced 20 flares (29.85%), see Figure 1.
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|
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Follow-up
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[ Control: 73 Patients } [ Optimization: 67 Patients }
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Figure 1: Optimization treatment study diagram.

The clinical database used in this study comprises a rich and diverse collection of variables gathered
from a longitudinal cohort of patients enrolled in a randomized clinical trial. The dataset includes admin-
istrative and identifying information (e.g., study arm, patient ID), along with detailed sociodemographic
characteristics such as age and sex. Clinical and temporal variables are extensively recorded, including
the occurrence and timing of disease flares, follow-up visits, and time-to-event data. Anthropometric mea-
surements such as weight, height, and body mass index (BMI) are documented at baseline and throughout
follow-up. The dataset also contains vital signs and physiological measurements, including blood pressure,
heart rate, respiratory rate, and body temperature. A comprehensive panel of laboratory and biochemical



variables is available, covering hematological, renal, hepatic, lipid, and inflammatory markers, measured
both at baseline and during disease activity.

Importantly, the dataset is highly specific to patients with rheumatoid arthritis (RA), as it includes
validated disease-specific instruments such as the Health Assessment Questionnaire (HAQ), which assesses
functional disability, and widely used clinical disease activity scores such as disease activity score (DAS28)
and simplified disease activity index (SDAI), based on physician and patient evaluations, joint counts, and
inflammatory markers. These variables provide critical insight into the burden of disease and response
to therapy in RA patients. In addition, the database captures genetic information, reproductive health
indicators, adverse event reports, and findings from systematic physical examinations. The structure of
the dataset allows for longitudinal analysis, with repeated measurements collected at multiple time points
(e.g., week 0 to week 120), supporting comprehensive modeling of disease progression, treatment response,
and outcome prediction in the context of rheumatoid arthritis.

3. RESULTS

Figure 2 shows the curves that estimate the probability of remaining relapse-free at each time point.
In the first year, the survival trajectories of the two groups were similar, suggesting comparable short-
term outcomes. By the second year, the curves tended to stabilize at relatively high values, indicating
that a substantial fraction of patients in both groups maintained long-term remission. A plateau in the
survival curves suggests that a subgroup of patients never experienced the event (relapse/flare), implying
the existence of a “cure” fraction.

First Year | Second year |
1.00{ —= 1.004
S ﬁ‘_\ﬂﬂ‘_\‘\“
F0.75 0.75 |
©
o
o
8.0.50 0.50
T
2
2025 0.25
>
N
0.00{ I I I I 0.001 I I I I
0 15 30 45 60 60 75 90 105 120
Time (Weeks) Time (Weeks)

Group = Control = Optimization

Figure 2: Survival function for each group, control and optimization, compared with their respec-
tive cure probability (dashed line).

During the first year, the estimated cure probability was 0.831 for the control group and 0.746 for
the optimization group. This indicates that patients receiving standard treatment at baseline had an
83% probability of remaining in remission throughout the first year, whereas those undergoing treatment
reduction had a 75% probability.

By the second year, these probabilities decreased further to approximately 80% and 66% for the control
and optimization groups, respectively (see Figure 2, Table 1). To assess whether these differences were
statistically significant, we compared cure probabilities using the testcov() function from the MDCcure
package. The function returns the four proposals in Monroy-Castillo, Jacome, Cao, & Keilegom (2025),
MDCU, MDCV, FMDCU and GOFT. Additionally, the function returns the 2}, given in Equation (6).

Although treatment optimization was linked to a lower probability of remission, the difference was not
statistically significant (Table 1). In other words, the group covariate showed no significant effect on cure
probability. However, by the second year, the gap in cure probabilities widened and the corresponding
p-value decreased compared to the first year, suggesting that treatment optimization might be associated
with a reduction in cure probability over time. From a clinical perspective, this implies that reducing
treatment through an optimization strategy does not meaningfully compromise the chances of achieving
or sustaining long-term remission. Nonetheless, it remains essential to identify the covariates that shape
this probability within each group.

For example, Figure 3 shows the estimated cure probability as a function of the Disease Activity
Score (DAS28) for both groups during the first and second years. In the first year, both groups maintained



First year Second year

Cure prob. p-value Cure prob. p-value

Cont.  Opt. Cont.  Opt.
MDCU 0.1689 0.1075
MDCV 0.1704 0.1025
FMDCU 0.841 0.746 0.1631 0.798 0.662 0.1030
GOFT 0.1491 0.0946

Table 1: Estimated probability of remaining in remission in the control (Cont.) and optimization
(Opt.) groups obtained using the unconditional cure rate estimator (Laska & Meisner, 1992) and
p-values for each period.

relatively high cure probabilities across the observed DAS28 range, with lower DAS28 values corresponding
to a higher likelihood of remaining in remission. In the control group, a DAS28 of 0.485 was associated
with a cure probability of 0.967 (95% CI: 0.911-1.00), while a DAS28 of 2.45 reduced the probability
to 0.794 (95% CI: 0.698-0.89). Similarly, in the optimization group, a DAS28 of 0.587 corresponded to
a cure probability of 0.845 (95% CI: 0.74-0.95), whereas a DAS28 of 2.46 lowered it to 0.708 (95% CI:
0.602-0.815).
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Figure 3: Estimated cure probability and 95% confidence bands conditional on DAS28 and density
for the two groups, control (blue) and experimental (red), during first year (left) and second year
(right).

Interestingly, the cure probability in the control group appeared to level off over time, indicating that
baseline DAS28 strongly influenced early remission but its impact lessened by the second year. In contrast,
for the optimization group, baseline DAS28 (week 60) continued to affect the likelihood of remission, as
shown by the persistent decrease in remission probability with higher DAS28 values (see Figure 3). These
results suggest that DAS28 may play a significant role in predicting sustained remission across both groups
over the two-year follow-up.

Nonparametric tests revealed that DAS28, Erythrocyte Sedimentation Rate (ESR), and C-Reactive
Protein (CRP) significantly affected the probability of remaining in remission in the control group during
the first year, with higher values associated with a notably lower chance of remission (see Table 2).

Whereas in the optimization group, the significant covariates were DAS28-CRP and 3V-DAS28-CRP.

The analysis was initially performed using a univariate approach for each covariate using the testcov()
function. To account for multiple testing, the False Discovery Rate (FDR) (Benjamini & Hochberg, 1995)
correction was subsequently applied, ensuring that the reported significant effects reflect robust associations
rather than chance findings.

It is important to emphasize that these tests are nonparametric, meaning that the distribution of the
cure probability is not specified and may present certain limitations. To address this, the MDCcure package
provides tools to assess and visualize whether the estimated cure probability follows common link functions
typically used in mixture cure models. In particular, the function goft() implements the goodness-of-fit



Control group

Covariate MDCU MDCV FMDCU GOFT

CRP 0.0117  0.0117 0.0077  0.0700

ESR 0.0117  0.0117 0.0087 0.1712

DAS28 0.0117 0.0117 0.0077  0.0000
Optimization group

DAS28-CRP 0.0175  0.0350 0.0141  0.0000

3V-DAS28-CRP  0.0233  0.0350 0.0141  0.0000

Table 2: Covariates having a significant effect on the probability of remaining in remission during
the first year, after controlling the false discovery rate (p-values).

test proposed by Miiller & Van Keilegom (2019) for three possible link functions: probit, logit, and
cloglog. In addition, the function plotCure() allows for the visualization of both the semiparametric and
nonparametric estimates of the cure probability.

For illustrative purposes, a semiparametric mixture cure model with a logistic link for the cure prob-
ability was fitted during the first year, considering DAS28, ESR, and CRP in the control group, and
DAS28-CRP and 3V-DAS28-CRP in the optimization group.

In the control group, the data were well described by the logistic model for CRP (p = 0.880), ESR
(p = 0.750), and DAS28 (p = 0.990). The semiparametric model (Table 3) further indicated that CRP
(p = 0.0237) and DAS28 (p = 0.0317) had a significant effect on the cure probability, while the effect of ESR
was borderline significant (p = 0.0565). In the optimization group, the goodness-of-fit test advise against
applying a semiparametric cure model with a logistic fit for DAS28-CRP (p = 0.018) and 3V-DAS28-CRP
(p = 0.025). Consequently, we cannot be confident that the logistic model (Table 3) accurately captures
the underlying cure dynamics, implying that alternative estimation approaches should be explored. These
alternatives might include models based on different distributional assumptions, potentially offering a more
precise representation of cure probability.

Estimate Std.Error Z value Pr(> |Z])
Control group

CRP
0o  -2.3661 0.3351 -7.0607  1.66e-12
01 2.1804 0.9642 2.2614 0.0237
ESR
0o  -2.5745 0.4846 -5.3126  9.16e-08
01 0.0486 0.0254 1.9159 0.0565
DAS28
0o -5.3596 1.9436  -2.7576  0.0058
0o 1.6255 0.7566 2.1485 0.0317
Optimization group
DAS28-CRP
0o  -4.8989 1.1556 -4.2393  2.242e-05
01 2.1963 0.6247 3.5159 4.382e-04
3V-DAS28-CRP

0o  -5.5511 1.4046 -3.9521  7.748e-05
01 2.5816 0.7614 3.3906  6.975e-04

Table 3: Estimated parameters of the logistic fit of the cure rate for covariates identified as signif-
icant by the nonparametric tests, in the control and optimization groups during the first year.

The plotCure() function produces Figure 4, which displays the nonparametric and logistic estimates
of the cure probability for the covariates DAS28, ESR, and CRP in the control group during the first year.
The similarity of the curves across both methods supports the adequacy of the semiparametric mixture
cure model. For the logistic estimation, the parameters were obtained using the smcure() function from



the smcure package (Cai et al., 2012) (see Table 3).
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Figure 4: Comparison of nonparametric (blue solid lines) and parametric (red solid line) estimates
of cure probability for significant covariates in the control group during the first year of follow-up.
The blue dashed lines denote the 95% confidence intervals of the nonparametric estimates. The
shaded areas correspond to the empirical density of each covariate.

On the other hand, Figure 5 presents the comparison between the nonparametric and semiparametric
estimates of the cure probability for DAS28-CRP and 3V-DAS28-CRP in the optimization group. In
contrast to the results obtained for the control group, the discrepancies between the curves are more
pronounced, particularly at higher values of the covariates. This suggests that the logistic specification
may not adequately capture the functional form of the cure probability in this context. Such deviations
reinforce the importance of using flexible nonparametric approaches, as they do not impose restrictive
assumptions on the distributional form of the cure probability. From a clinical perspective, these findings
indicate that the effect of composite disease activity scores on long-term remission may be more complex
and not easily explained by a simple logistic model.

DAS28-CRP 3V-DAS28-CRP
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Figure 5: Nonparametric estimation (blue line) of the cure probability compared with the logistic
fit (red line).

CONCLUSIONS

This work highlights the usefulness of the MDCcure package in R for the analysis of mixture cure
models. The package incorporates distance-based measures, such as the martingale difference correlation
and the partial martingale difference correlation, providing flexible tools for assessing covariate effects. In



addition, it offers functions for testing whether specific covariates influence the cure probability through four
nonparametric hypothesis tests. Complementing this, the package also includes procedures to evaluate the
adequacy of different link functions, logit, probit, and cloglog, and a function to compare nonparametric and
semiparametric estimates of the cure probability, thereby facilitating both inference and model validation
in practical applications.

From the application to the clinical dataset, several relevant findings emerge. First, although treat-
ment optimization was associated with a slightly lower probability of long-term remission compared to
standard treatment, this difference did not reach statistical significance. Importantly, the cure probabili-
ties remained relatively high in both groups, suggesting that treatment reduction strategies may be feasible
without substantially compromising clinical outcomes. Second, covariates such as DAS28, ESR, and CRP
in the control group, and DAS28-CRP and 3V-DAS28-CRP in the optimization group, were identified as
significant predictors of remission, underscoring their clinical relevance for individualized treatment as-
sessment during the first year. Third, while semiparametric logistic models provided a good fit for some
covariates, marked deviations were observed for others, particularly in the optimization group, highlighting
the importance of flexible nonparametric approaches that avoid restrictive assumptions on the functional
form of the cure probability.
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